
Configuration Changes in MicroStation CONNECT Edition
With MicroStation CONNECT Edition we have made some significant changes to what was known as

a workspace. Below is the information regarding these changes.

Configuration Changes in MicroStation CONNECT Edition

1. Introduction
In MicroStation CONNECT Edition (hereafter referred to as CONNECT), there have been a number of

changes to the way Configuration Files are organized and processed. This document describes those

changes. It assumes a knowledge of Configuration File concepts and a familiarity with how they were

used in MicroStation V8i (hereafter referred to as V8i).

2. Terminology Changes
In V8i, the overall usage of Configuration Files and Configuration Variables was referred to as

Workspaces. That overall usage is referred to as the Configuration in CONNECT.

In V8i, the grouping of Configuration Files and Configuration Variables that were used across an

entire organization was referred to as the “Site” level. In CONNECT, it is referred to as the

“Organization” level.

In V8i, a grouping of files and associated data was referred to as a “Project”. That terminology has

been problematic, because MicroStation user organizations use the term Project for a business

purpose that is rarely precisely correlated to the data grouping in MicroStation. Therefore that

grouping is now referred to as a “WorkSet”. For example, the Configuration Variable level formerly

known as Project is now the WorkSet level.

In V8i, Projects were organized by “User”. Selecting a different User had the effect of changing the

list of Projects that were available, and also changing the User Preference (.upf) file and User

Configuration (.ucf) file in use. In CONNECT, selection of User has been removed from the user

interface. Each CONNECT user has their own personal .upf file and .ucf file, associated with their

Windows login, so that configuration variables that they set and user preferences that they select

are not affected by the WorkSpace or WorkSet they are working on.

3. Directory Structure differences
In MicroStation V8i, the default delivery directory was to a root directory that contained

MicroStation, Workspace, and Documentation subdirectories. In keeping with the terminology

change discussed above, the Workspace directory has been renamed to Configuration. The V8i

WorkSpace directory included Bentley-provided system data in the System subdirectory. That was a

disadvantage because some of that data is MicroStation version specific, so in CONNECT, there is no

Configuration\System directory. Its contents have been moved into a subdirectory of the

MicroStation directory.

4. Configuration Level differences
In V8i, there were 5 Configuration Levels, organized from lowest to highest priority as shown below.

Configuration Variables defined at higher levels override definitions at lower levels:

System 0

Application 1

Site 2

Project 3

User 4

In a V8i Configuration File, the level at which Configuration Variables were defined was set using

the %level directive, specifying one of the numbers in the right column above. An alternative was to

put the level number at which Configuration Files were to be processed in the %include statement.

In CONNECT, there are 7 Configuration Levels. From lowest to highest priority they are:

System 0

Application 1

Organization 2

WorkSpace 3

WorkSet 4

Role 5

User 6

In a Configuration File, the level is still set using the %level directive, but now the argument is one of

the text values in the left column instead of the number. That improves readability of configuration

files. You can still specify a number, but a warning is generated because it is an indication that you

might be processing a pre-CONNECT configuration file, and the Configuration Level number might no

longer be correct. Most of the time, the %level directives (or level settings in %include statements)

are in Bentley-delivered configuration files that sequence inclusion of user-authored configuration

files, rather than in user-authored configuration files. However, advanced users may have

used %level directives, and thus might encounter the warning.

The two additional levels in the CONNECT configuration, WorkSpace and Role, are discussed below.

5. WorkSpace
In CONNECT, a “WorkSpace” is a container grouping WorkSets, standards files, and associated

Configuration Files that used in a particular broad context. Different user organizations will have

different uses for the “WorkSpace” grouping mechanism. Engineering and Architectural firms might

use a separate WorkSpace for each of their clients. Asset owners are likely to use a separate

WorkSpace for each asset or department. For that reason, the label that appears for WorkSpace in

the CONNECT user interface can be set by a configuration variable. That is done by specifying the

Configuration Variable _USTN_WORKSPACELABEL in the WorkSpaceSetup.cfg file in the

Configuration subdirectory. The default value is the neutral “WorkSpace”.

For those familiar with MicroStation V8i, there is some parallel between WorkSpaces and the “User”

concept in V8i, in that the User Configuration File was used to filter the displayed Projects list.

However, WorkSpaces are better suited to typical user organization workflows because they appear

at the correct level in the hierarchy of Configuration Levels, and because they do not affect user-

specific settings.

6. Role
A frequent enhancement request has been to add a Configuration Level that allows standards and

certain program behavior to be controlled based on the role or discipline of an individual user.

CONNECT provides this additional Configuration Level, but leaves it to the user organization to

determine how to identify the role of individual users. To use this feature, the Configuration Variable

_USTN_ROLECFG is set to the full file name of a Configuration File that contains the role-specific

Configuration Variable settings. That can be accomplished in any of the following ways:

• setting a system environment variable at login time,

• conditional tests in WorkSet or WorkSpace configuration files,

• setting the configuration variable in the Configuration dialog,

• some other mechanism devised by the system administrator.

The _USTN_ROLECFG Configuration File is processed after the WorkSpace, WorkSet and User

Configuration Files have been processed, to allow any of them to specify _USTN_ROLECFG.

7. Configuration Fundamentals
MicroStation and associated applications define Configuration Variables at the System and

Application levels in Configuration Files that are delivered with the product. Administrators generally

make changes at the Organization, WorkSpace, WorkSet, and Role levels, in user-supplied

Configuration Files. MicroStation provides template Configuration Files that can be used as a starting

point for those Configuration Files.

Configuration Variables are organized into Framework Configuration Variables, which start with the

“_USTN_” prefix, and Operational Configuration Variables, most of which start with the “MS_” prefix.

In general, the Framework Configuration Variables are used in Configuration Files, while Operational

Configuration Variables are used to direct program flow within MicroStation. A few of the

Framework Configuration Variables are determined by the MicroStation installation directory. Other

Framework Configuration Variables default to locations relative to the installation directory, but can

be (and some of them are expected to be) changed in configuration files provided by the user.

MicroStation’s Configuration File processing can be regarded as interpreting a simple program, part

of which is provided by System Configuration Files, which should not be modified by the user, and

part of which is provided by Configuration Files that are intended to be user modified. All

configuration files are simple text files that can be examined (and modified, in the case of user-

modifiable Configuration Files) with any text editor.

The system Configuration Files are located in the MicroStation/config installation directory, while

user-modifiable Configuration Files are in the Configuration installation directory or other user-

specified directories. User-modifiable Configuration Files are included into the Configuration File

processing flow at appropriate times by the System Configuration Files.

Section 9 provides a “walk through” of the processing of Configuration Files, and identifies the touch

points where user-modifiable Configuration Files can specify directories and MicroStation behavior.

An essential aid to understanding Configuration File processing is the MicroStation command line

argument “-debug”. That tells MicroStation to write out a text file that contains the history of how

every Configuration Files was processed, and to open that file in whatever editor that your Windows

system has configured to handle text files (usually Notepad). When you close Notepad, MicroStation

closes also.

While running MicroStation, you can see the current values of all Configuration Variables using the

new “SHOW CONFIGURATION” command. That also opens Notepad with the current Configuration

Variables.

8. Configuration File Syntax

Configuration files consist of statements of three types:

• Flow Directives that control the flow through Configuration Files.

• Variable Directives that control certain aspects of Configuration Variables

• Assignment statements that set the value of Configuration Variables.

• Expressions and operators that manipulate strings or Configuration Variables to yield results

that can be used in directives or assignments

Configuration Variables are often defined in terms of other Configuration Variables. This can be done

in two different ways:

• When plain parentheses are used, as in $(<CfgVarName>), the expression is stored verbatim

in the Configuration Variable definition and evaluated later, when the value of the Configuration

Variable is eventually needed during program execution. This form is much more flexible, since the

definition can be set using other Configuration Variables even if they have not yet been defined. It is

thus more commonly used.

• When curly braces are used, as in ${<CfgVarName>}, the value of CfgVarName is evaluated

immediately, while the configuration file itself is being processed. Therefore, the Configuration

Variable used in the expression must be previously defined.

9. Configuration File Processing

Configuration File processing starts with the Configuration File mslocal.cfg. It is a “bootstrap” file

with only a few lines – it includes msdir.cfg, another small Configuration File that is generated at

install time and identifies the MicroStation installation directory, and then includes msconfig.cfg,

which contains the main “program flow” of Configuration File processing.

The msconfig.cfg Configuration File

You should never modify msconfig.cfg itself (or any of the other configuration files in the

MicroStation program directory). As you will see in the discussion below, there are a number of well-

defined places where msconfig.cfg includes user-modifiable Configuration Files. It is in those user-

modifiable Configuration Files that Configuration Variables should be modified to provide all the

flexibility necessary to meet your organization’s requirements for data location.

The msconfig.cfg Configuration File begins by setting the _USTN_BENTLEYROOT Configuration

Variables and a number of Framework Configuration Variables that point to directories where

program data is delivered. Those are necessary for program operation, but do not define locations

for any user data or files. It then includes the system and application Configuration Files that are

shipped with MicroStation.

#--*/

Include all the delivered system configuration files.

These define System level configuration variables.

#--

%include $(_USTN_SYSTEM)*.cfg level System

#--

Include the delivered application configuration files.

These define Application level configuration variables.

#--

%include $(_USTN_APPL)*.cfg level Application

The part relevant to setting up a customized Configuration begins where msconfig.cfg defines the

_USTN_CONFIGURATION Configuration Variable:

#--

Define the root directory for the Configuration data.

#--

_USTN_CONFIGURATION : ${_USTN_BENTLEYROOT}Configuration/

Since the curly braces are used, this is immediately evaluated to the Configuration subdirectory of

the installation directory.

By default, many other Configuration Variables are set to subdirectories of the directory defined by

_USTN_CONFIGURATION. The definition of those variables (_USTN_ORGANIZATION,

_USTNWORKSPACESROOT, _USTNWORKSETSROOT, etc.) follows the definition of

_USTN_CONFIGURATION.

The WorkSpaceSetup.cfg Configuration File

The first opportunity for customization of your configuration is where msconfig.cfg includes

WorkSpaceSetup.cfg:

%if exists ($(_USTN_CONFIGURATION)WorkSpaceSetup.cfg)

% include $(_USTN_CONFIGURATION)WorkSpaceSetup.cfg

%endif

As you can see WorkSpaceSetup.cfg is located in the Configuration directory of the delivery, and is

intended to be customized by users. Here is the contents as it shipped:

#--

WorkSpaceSetup.cfg - Configures WorkSpace for Your Organization

The main function of this configuration file is to set the label that

your organization wants to use for WorkSpaces. WorkSpaces are the

grouping mechanism for WorkSets. The label for this level of grouping

could be Client, Facility, Department, Owner, or whatever you would

like it to be. The default label is the neutral "WorkSpace". Uncomment

the definition below, and set it to your preferred label.

#--

_USTN_WORKSPACELABEL : WorkSpace

#--

A second possible use for this configuration file is to redirect the

root directory where your Organization-wide standards are stored to somewhere

other than the default. The default is $(_USTN_CONFIGURATION)Organization/.

It can be changed by redefining _USTN_ORGANIZATION.

#--

#--

A third possible use for this configuration file is to redirect the

root directory where your WorkSpaces are stored to somewhere other

than the default. The default is $(_USTN_CONFIGURATION)WorkSpaces/.

It can be changed by redefining _USTN_WORKSPACESROOT.

#--

The comments in the file explain its three principle uses – setting the WorkSpace label to the desired

value for your organization, and possibly redirecting your organization-wide standards data and/or

all of your other WorkSpace data to another location (for example, to a network share). See the

“Typical Configuration Scenario” section below for an example of usage.

Organization Configuration Files

Upon returning from including WorkSpaceSetup.cfg, msconfig.cfg includes your organization-wide

Configuration Files (if any):

#--

Include the Organization specific configuration files.

The configuration files in the _USTN_ORGANIZATION directory are intended to

set configuration variables that point to organization-wide standards

such as level libraries, cell libraries, etc. Those settings can be

augmented or overridden at the WorkSpace or WorkSet level.

#--

%level Organization

%if exists ($(_USTN_ORGANIZATION)*.cfg)

% include $(_USTN_ORGANIZATION)*.cfg

%endif

As delivered, _USTN_ORGANIZATION points to the Configuration\Organization directory, which

contains one Configuration File, standards.cfg, which sets Configuration Variables assuming the

generic directory structure in the delivery. If you have redirected _USTN_ORGANIZATION, you can

either adopt the same directory structure or change it to meet your needs. Since the %include

statement above includes all Configuration Files in the _USTN_ORGANIZATION directory, you can call

your Configuration File something other than standards.cfg, and you can use more than one

Configuration File in that directory if you prefer. They will be included in alphabetical order.

The User Configuration File

The next step is to include the User Configuration file. The User Configuration file is stored in the

preferences directory as Personal.ucf, and stores the individual users preferences and state. It is

included here, because the most recently used WorkSpace and WorkSet are stored in the User

Configuration file.

The WorkSpace Configuration File

The next step in the configuration process is to determine the WorkSpace Configuration File. Each

WorkSpace has a Configuration File named <WorkSpaceName>.cfg that must be located in the

directory pointed to by _USTN_WORKSPACESROOT. As delivered, _USTN_WORKSPACESROOT is

defined as $(_USTN_CONFIGURATION)WorkSpaces/, but that can be changed in the

WorkSpaceSetup.cfg file as discussed above.

One and only one WorkSpace Configuration File is processed. There is some logic in msconfig.cfg

that determines which WorkSpace Configuration File to load by setting the

_USTN_WORKSPACENAME, but that can be ignored for our current purposes – MicroStation is

responsible for remembering the most recent WorkSpace name and using it to set

_USTN_WORKSPACENAME.

The WorkSpace Configuration File is then included from msconfig.cfg using this construction:

%if defined (_USTN_WORKSPACENAME)

% if exists ($(_USTN_WORKSPACESROOT)$(_USTN_WORKSPACENAME).cfg)

 _USTN_WORKSPACECFG = $(_USTN_WORKSPACESROOT)$(_USTN_WORKSPACENAME).cfg

% include $(_USTN_WORKSPACECFG) level WorkSpace

% endif

%endif

User organizations will frequently customize WorkSpace Configuration Files. When a new

WorkSpace is created, it starts with a template WorkSpace Configuration File like the following:

#--

WorkSpace.Template - Template for new WorkSpaces

When MicroStation runs, one and only one WorkSpace configuration file

is chosen and included.

The function of the WorkSpace configuration file is to define the location

of _USTN_WORKSPACEROOT, _USTN_WORKSPACESTANDARDS, and/or _USTN_WORKSETSROOT

for this WorkSpace. Those are the root directory, the standards directory,

and the WorkSets root directory, respectively.

Default locations are defined in msconfig.cfg:

_USTN_WORKSPACEROOT is $(_USTN_WORKSPACESROOT)$(_USTN_WORKSPACENAME)/

_USTN_WORKSPACESTANDARDS is defined as $(USTN_WORKSPACEROOT)Standards/

_USTN_WORKSETSROOT is defined as $(USTN_WORKSPACEROOT)WorkSets/

If those defaults are acceptable, this file need not make any definitions.

To move all WorkSpace data to a separate directory (e.g., to a network share)

_USTN_WORKSPACEROOT can be redefined and the default values retained for

_USTN_WORKSPACESTANDARDS and _USTN_WORKSETSROOT

#--

As you can see, any combination of the WorkSpace root, standards, or WorkSets root directory can

be redirected according to the user’s requirements.

The next step in msconfig.cfg is to include any Configuration Files that are stored in the directory

pointed to by _USTN_WORKSPACEROOT:

#--

When we get to this point, we have a WorkSpace defined.

There may be .cfg files within the WorkSpace. Process those here.

#--

%if exists ($(_USTN_WORKSPACEROOT)*.cfg)

% include $(_USTN_WORKSPACEROOT)*.cfg level WorkSpace

%endif

These Configuration File(s) are optional, and can contain whatever Configuration Variable definitions

that are appropriate in the user’s workflow. Often, no additional Configuration Files are needed. The

Example WorkSpace delivered with MicroStation doesn’t have any.

The WorkSet Configuration File

After the WorkSpace Configuration Files have been processed, msconfig.cfg attempts to load one

(and only one) WorkSet Configuration File. Each WorkSet within a WorkSpace has a Configuration

File named <WorkSetName>.cfg that must be located in the directory pointed to by

_USTN_WORKSETSROOT. By default, _USTN_WORKSETSROOT is defined as

$(_USTN_WORKSPACEROOT)WorkSets/, but that can be changed in the WorkSet Configuration File

as discussed above. MicroStation is responsible for remembering the most recently used WorkSet,

and it sets the _USTN_WORKSETNAME configuration variable accordingly. The WorkSet

Configuration File is included like this:

%if exists ($(_USTN_WORKSETCFG))

% include $(_USTN_WORKSETCFG) level WorkSet

%endif

The Role Configuration File

After WorkSet Configuration files have been processed, msconfig.cfg checks to see whether

_USTN_ROLECFG has been defined. If it has, the Configuration File that it is defined in

_USTN_ROLECFG is processed. As mentioned above, MicroStation has no default for

_USTN_ROLECFG – it must be set as a system environment variable or defined in one of the user-

modifiable Configuration Files that are processed prior to reaching this part of msconfig.cfg

The final part of msconfig.cfg handles the database configuration file, if that feature is in use.

When msconfig.cfg has been fully processed, all the initial Configuration Variable definitions are

complete

10. Configuration Changes during MicroStation execution

Whenever a different WorkSet is selected, MicroStation takes the following Configuration Variable

actions:

• If the WorkSet belongs to a WorkSpace that is different from the WorkSpace to which the

currently active WorkSet belongs, all WorkSpace level Configuration Variables are discarded.

• All WorkSet level Configuration Variables are discarded.

• If the WorkSet belongs to a different WorkSpace, that WorkSpace’s Configuration File(s) are

processed.

• The WorkSet Configuration Files are processed.

• The new WorkSpace and WorkSet are written to the user’s Personal.ucf file.

A different WorkSet can be selected in a number of ways:

• From File->Browse, a different WorkSpace/WorkSet can be selected in the File Browser

dialog.

• From the Start Page (reached using File->Close) a different WorkSpace/WorkSet can be

selected either directly or by selecting one of the Recent WorkSets.

• In CONNECT, design files have their WorkSpace / WorkSet recorded in their metadata. When

a design file with such metadata is opened, and it is from a different WorkSet, the user can opt to

change to the WorkSpace / WorkSet recorded in its metadata.

• Using the “-WW<workset> command line argument when starting MicroStation.

11. Configuration Variable Changes between V8i and CONNECT

The following table lists the framework Configuration Variables in CONNECT that are either new or

replace Configuration Variables in V8i. In the case of a replacement, the second column lists the V8i

Configuration Variable.

12. Typical Configuration Scenario

Tensor Engineering performs services for a number of clients. The firm has its own internal

standards for drawing borders, cell libraries, levels, materials, etc. However, some of its clients

require that their own standards be used in addition or instead. The firm’s Information Technology

department uses one server ‘Tensor’ for internal standards. One of its major clients is Imperial

Biotechnology Company, who has their own standards. The IT department maintains a server

‘Imperial’ for all of the work that it does for Imperial Biotechnology. The Administrator is tasked with

defining the appropriate Configuration for Tensor Engineering and for the work it does on behalf of

Imperial Biotechnology, and getting all MicroStation users to share that configuration. Here are

steps that can be taken.

Tensor’s MicroStation administrator configures the MicroStation installation to install the

MicroStation desktop shortcut to include the command line argument “-

WR\\Tensor\MicroStation\Configuration\”. This defines the _USTN_CONFIGURATION variable when

MicroStation is started.

The administrator copies the delivered WorkSpaceSetup.cfg to the

\\Tensor\MicroStation\Configuration directory (to which _USTN_CONFIGURATION is defined at

startup) and edits it to read as follows:

#--

WorkSpaceSetup.cfg - Configures WorkSpace for Tensor Engineering

Set the WorkSpace label to Client

#--

_USTN_WORKSPACELABEL = Client

#--

Tensor-wide standards are located on the ‘Tensor’ server

#--

_USTN_ORGANIZATION = //Tensor/MicroStation/TensorStandards/

#--

Tensor Client Configuration files are located on the server.

#--

_USTN_WORKSPACESROOT = //Tensor/MicroStation/Clients/

Tensor Engineering decides to use the Bentley-suggested subdirectory structure for its internal

standards. Therefore the administrator creates the same subdirectories as are in the delivered

example Configuration\Organization directory, and populates those directories with cell libraries,

DGNLIBS, materials, fonts, etc. that match Tensor standards. Since the subdirectory structure is the

same as the example, the administrator simply copies the delivered Standards.cfg to the

\\Tensor\MicroStation\TensorStandards\ directory. Since all Configuration Variable definitions in

standards.cfg are relative to _USTN_ORGANIZATION, no changes are needed.

The administrator sets up the Imperial Biotechnology configuration. The starting point is the

Example.cfg file delivered in Configuration\WorkSpaces, so he or she copies that file to “Imperial

BioTechnology.cfg” in the \\Tensor\MicroStation\Clients\ directory. Since all of the Imperial

Biotechnology data is located on the Imperial server (in the share called MicroStation), the easiest

thing to do is to simply redirect _USTN_WORKSPACEROOT to a share on that server. The

‘MicroStation’ share contains Standards and WorkSets subdirectories, which match the defaults for

_USTN_WORKSPACESTANDARDS and _USTN_WORKSETSROOT, so there is no need to set those.

Imperial Biotechnology supplies some additional DGNLIB files and cell libraries used for Tensor to

use, so those are appended to the appropriate Configuration Variables. So the completed “Imperial

Biotechnology.cfg” WorkSpace Configuration File looks like this.:

#--

Imperial Biotechnology.cfg – Configuration for Imperial Biotechnology

All of the standards and WorkSets for Imperial are located on the

‘Imperial’ server.

#--

_USTN_WORKSPACEROOT = //Imperial/MicroStation/

#--

Imperial Biotechnology supplies several DgnLibs and GUI DgnLib files:

#--

MS_DGNLIBLIST > $(_USTN_WORKSPACESTANDARDS)DgnLib/*.dgnlib

MS_GUIDGNLIBLIST > $(_USTN_WORKSPACESTANDARDS)DgnLib/GUI/*.dgnlib

#--

Imperial Biotechnology supplies several Cell libraries, so

add their subdirectory to the Cell library search path.

#--

MS_CELL > $(_USTN_WORKSPACESTANDARDS)Cell/

Tensor Engineering secures a new contract with Imperial Biotechnology for renovation of their

laboratory in Taos, New Mexico. In the “Imperial Biotechnology” WorkSpace, they create a new

WorkSet called ‘Taos’. The WorkSet creation tool copies the WorkSet template to

_USTN_WORKSETSROOT, creating \\Imperial\MicroStation\WorkSets\Taos.cfg. The administrator

retains the defaults for the Standards and Data location, so the Create WorkSet tool creates

subdirectories \\Imperial\MicroStation\WorkSets\Taos\Standards and

\\Imperial\MicroStation\WorkSets\Taos\Dgn to hold the standards and design files for this WorkSet.

